Fast Graph Fourier Transforms Based on Graph Symmetry and Bipartition
نویسندگان
چکیده
منابع مشابه
Graph Equivalence Classes for Spectral Projector-Based Graph Fourier Transforms
We define and discuss the utility of two equivalence graph classes over which a spectral projector-based graph Fourier transform is equivalent: isomorphic equivalence classes and Jordan equivalence classes. Isomorphic equivalence classes show that the transform is equivalent up to a permutation on the node labels. Jordan equivalence classes permit identical transforms over graphs of nonidentica...
متن کاملApproximate fast graph Fourier transforms via multi-layer sparse approximations
The Fast Fourier Transform (FFT) is an algorithm of paramount importance in signal processing as it allows to apply the Fourier transform in O(n logn) instead of O(n) arithmetic operations. Graph Signal Processing (GSP) is a recent research domain that generalizes classical signal processing tools, such as the Fourier transform, to situations where the signal domain is given by any arbitrary gr...
متن کاملAgile Inexact Methods for Spectral Projector-Based Graph Fourier Transforms
We propose an inexact method for the graph Fourier transform of a graph signal, as defined by the signal decomposition over the Jordan subspaces of the graph adjacency matrix. This method projects the signal over the generalized eigenspaces of the adjacency matrix, which accelerates the transform computation over large, sparse, and directed adjacency matrices. The trade-off between execution ti...
متن کاملFast Fourier Transforms
29 O(b log(b)) operations (using standard multiplication). As there are O(b= log(b)) primes in total, the running time of this stage of the algorithm is O(b 2 L), even using the \grammar school" method of integer multiplication. At this stage of the algorithm we have obtained a vector of length L whose entries are integral linear combinations of powers of with coeecients bounded by M in absolut...
متن کاملDimensionless Fast Fourier Transforms
This paper shows that there are fast Fourier transform (FFT) algorithms that work, for a fixed number of points, independent of the dimension. Changing the dimension is achieved by relabeling the input and the output and changing the “twiddle factors.” An important consequence of this result, is that a program designed to compute the 1-dimensional Fourier transform can be easily modified to com...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Signal Processing
سال: 2019
ISSN: 1053-587X,1941-0476
DOI: 10.1109/tsp.2019.2932882